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Abstract  Existence and conditional-smooth solution of the Navier-Stokes equation is one of the most important problems 
in mathematics of the century, which describes the motion of viscous Newtonian fluid  and which  is a  basic of 
hydrodynamic[1]. Therefore in this work we solve a nonstationary problem Navier-Stokes for incompressible flu id. 
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1. Introduction 
If to designate components of vectors of speed and external 

force, as 
[ ]1 2 3( ,t ) ( ,t ), ( ,t ), ( ,t ) ,υ υ υ=v x x x x

[ ]1 2 3( ,t ) f ( ,t ), f ( ,t ), f ( ,t ) ,=f x x x x  
that for each value  1,2,3i =  turns out the corresponding 
scalar equation of  Navier-Stokes  

3
i i

j i i
j 1 j i

1 Pf ,
t x x
υ υυ µ∆υ

ρ=

∂ ∂ ∂
+ = − +

∂ ∂ ∂∑ 
   (1.1) 

with conditions 
3

0div 0,(( , ) [0, ])x t T R Tν = ∈ = ×     (1.2) 

i t 0 i0 1 2 3( x ,x ,x ),υ υ= = 3
1 2 3( x ,x ,x ) R ,∀ ∈   (1.3) 

µ > 0 - kinematic viscosity, ρ - density, ∆ - Laplas’s 
operator. The additional equation is the condition 
incompressibility fluid (2). Unknown are speed ν  and 
pressure P. 

The work purpose. The main object of this work - 
existence and proofs of single and conditional smoothness of 
the decision of a problem Navier-Stokes for an 
incompressible flu id with viscosity. 

Theoretical  and practical value. Our p roblem does not 
include a derivation of an equation in a physical meaning, 
s ince there is  a  b ig  amount  o f works  reflect ing  these 
questions[2-4, 8-10]. The Received decisions on the basis of 
the developed  analyt ical methods p roves in  the general  
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applicability of the equations of Navier-Stokes. 
In a case 0 1µ< <  the current is considered with very 

small viscosity. When the current is considered with very 
small v iscosity i.e. when Reynolds's number is very great 
( )→∞Re [8,9] there is an border layer in which viscosity 
influence is concentrated. In many works in this area of the 
decision of the equations Navier-Stokes received by the 
numerical analysis, also confirm these conclusions. 

And in a case const00 µ µ< = = < +∞  the current 
is considered with average size of v iscosity. At very slow 
currents, or in currents of is strong-viscous liquids of force of 
a frict ion much more, than forces of inertia. Hence 
convective the acceleration doing the equations nonlinear, 
everywhere are supposed identically  equally  to a zero[9]. 
Therefore in a case when convective acceleration is not equal 
to zero p roblems connected with methods of integration of 
the equations of Navier-Stokes in their general view are 
arisen. 

The decision of many problems of theoretical and 
mathematical physics leads to use of various special weight 
spaces. In works[5-7] for the first time have offered a method 
which gives solution of problem Navier-Stokes in 2G (T ) :λ   

{2 3,0
1 2 3 i

2
it 0 it 1 2 3

G (T ) ( x ,x ,x ,t ) T : C (T );

L (0,T ),( i 1,3 ), ( x ,x ,x ,t )
λ

λ

ν υ

υ υ

∈ = ∈ ∈

∈ = −
 is continuous and limited functions on   

3
1 2 3( x ,x ,x ) R ,∈ }3,3,3,0 3,0C (T ) C (T )≡  

and 

2 2
( ; )i

2 3,0 2
( ; )i

3

iG ( T ) D ( T )
i 1

i i itD ( T ) C ( T ) L

v ,

,i 1,3,

λ υ λ

λυ λ

υ

υ υ υ
=


=


 = + =


∑ 



  (1.4) 
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0
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it it 1 2 3L
R 0

T

0
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( sup ( t ) ( x ,x ,x ,t ) dt ) ,

10 ( t ) : ( t ) dt q .
t

λ
υ λ υ

λ λ


=





≤ =


∫

∫
 

To answer the brought attention to the question, we offer 
the following method of the decision of a problem 
Navier-Stokes. For that the phrpose, system (1.1) we will 
transform to a kind 

i iit i i x x i
1 1f P Q ,( i 1,3 ),

2
υ θ µ∆υ

ρ
+ = − − + = (1.5) 

j i

3

i j ix x
j 1

1( Q ),( i 1,3 ),
2

θ υ υ
=

= − =∑       (1.6) 

0 3
i t 0 i 1 2 3 1 2 3( x ,x ,x ), ( x ,x ,x ) R ,θ θ= = ∀ ∈  (1.7) 

 

[ ]

= =

= =

 ≡ = =


 = =


∑ ∑

∑ ∑

i

i

3 3
2
i j

1

3 3
0 2

j0 j0

i

i i

jx
i j 1

j0 x
j 1 j 1

x

x x

Q , Q 2 ,( i 1,3 ),

Q 2 ,

υ υ υ

υ υ υ
 (1.8) 

without breaking equivalence of system (1.1) and (1.5), (1.6). 
The received systems (1.5), (1.6) contain unknown persons 

iυ , i ,( i 1,3 )θ =  and pressure P. Here 0
iθ -known 

functions because are known 
ij0 j0 x,υ υ . 

The developed method of the decision of systems (1.5) 

and (1.6), is connected with functions i ,( i 1,3 )θ = , i.e. 

A) rot 1 2 30, ( , , )θ θ θ θ θ= =  ; rot 0ν ≠  or  

B) i ,( i 1,3 )θ = - any functions if, accordingly, as 
necessary conditions, take place:  

а0) rot 0 0 0 0 0
1 2 30, ( , , ),θ θ θ θ θ= = 

 b0) 
0θ - any 

functions. 

2. A Problem of Navier-Stokes with a 
Condition (А) 

In this paragraph in the subsequent points, at the specified 
restrictions on the entrance data, the strict substantiation of 
compatibility of systems (1.5), (1.6) will be given.  

2.1. Research With a Condition (A) 

Let functions 0
i ,( i 1,3 )θ =  satisfy to a condition (a0). 

Then relatively i ,( i 1,3 )θ = we suppose a condition (A) and 

divf 0,0 1,µ≠ < <              (2.1) 
where from system (1.5) and (1.6), accordingly we will 
receive fo llowing systems 

i i iit x x i x i
1 1Q f P ,( i 1,3 ),
2

υ θ µ∆υ
ρ

+ + = − + =  (2.2) 

i

i j i

i x

3

x j ix x
j 1

,

1( Q ),( i 1,3 ).
2

θ θ

θ υ υ
=

=



= − =


∑
  (2.3) 

Theorem 1. Let conditions (1.2), (1.3), (A) and (2.1) are 
satisfied. Then systems (2.2) and (2.3) it is equivalent will be 
transformed to a kind 

  

  
=

=


= − ≡ + + ≡ −


= + −


 = − ≡ −

 = − − +


+


 = − + − + −

∑

∑

∫
3

3

0 0
1

3
0 0

1 2 3

1 2 3
0 1 2 3

2 2 2
1 1 2 2 3 3

i

i

i

it i

i 1

R

i

ix

i

ix

x

1 1J F , J P Q , F f ,
2

f J ,

, ( x ,x ,x ,t ),

1 1P Q
2

ds ds ds1 F ( s ,s ,s ,t ) ,
4 r

r ( x s ) ( x s ) ( x s ) .

∆ θ
ρ

υ µ∆υ

∆θ ψ ψ ψ

θ
ρ

π

 (2.4) 

Hence, the problem (1.1) - (1.3) has the unique decision 
which satisfies to a condition (1.2). 

Proof. From system (2.2) it is visible, if the 1-equation 
(2.2, i=1) it  is differentiated on x1, 2-equation on x2 (2.2, i=2), 
3-equation on x3 (2.2, i=3), and it is summarised, we will 
receive the equation of Puasson[10]  

0J F∆ = − ,                     (2.5) 
as 

div div

1 2 3

i 1 2 3

1x 2 x 3x

23 3

ix 1x 2 x 3x2
i 1 i 1 i

0

1 1( ) ( Q P )
t 2

f ( ),
x

0, f F .

υ υ υ ∆ θ
ρ

µ υ υ υ

ν
= =

∂ + + + + + =∂
 ∂
= + + + ∂
 = = −



∑ ∑  

At that it is proved 

3

1 2 3
0 1 2 3

R

ds ds ds1J F ( s ,s ,s ;t )
4 rπ

= ∫ ,     (2.6) 

i
3

x i 0 1 1 2 2 3 3
R

1 2 3
i i i2 2 2 3

1 2 3

1J F ( x ,x ,x ;t )
4

d d d ,( s x ,i 1,3 ).
( )

τ τ τ τ
π

τ τ τ τ
τ τ τ

= + + + ×

× − = =
+ +

∫
(2.7) 

Algorithm when we will receive the equation of Puasson 
(2.5) for brevity we name «algorithm puassonization 
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systems». 
In work of Sobolev[10] it is specified that function (2.6) 

satisfies to the equation (2.5) and is called  Newtons’ 
potential. 

Therefore, if J - the decision of the equation (2.5), then 
substituting  

i i i ix x xх
1 1J P Q

2
θ

ρ
≡ + +         (2.8) 

in (2.2), we have 

iit i i i x if J ,( i 1,3; J J ),υ µ∆υ= + − = ≡  (2.9) 

i.e. system (2.2) it  is equivalent by (2.9) will be 
transformed to a kind linear the nonuniform equation of heat 
conductivity. The equations (2.5), (2.9) is there are first and 
second equations of system (2.4). 

The system (2.9) is solved by S.L.Sobolev’s method: 

exp

exp

[ ]

exp

3

3

3

2

i i0 1 2 33
R

t 2

1 2 3 3
0 R

i 1 2 3 i 1 2 33

2 2 2
1 2 3 1 2 33

R

i0 1 1 2 2 3 3

1 2

1 r( ) ( s ,s ,s )
4 t8( t )

1 rds ds ds ( )
4 ( t s )8

1 f ( s ,s ,s ,s ) J ( s ,s ,s ,s )
( ( t s ))

1ds ds ds ds ( ( ))

( x 2 t ,x 2 t ,x 2 t )

d d d

υ υ
µπµ

µπ

µ

τ τ τ
π

υ τ µ τ µ τ µ

τ τ τ

= − ×

× + − ×
−

× − ×
−

× ≡ − + + ×

× + + + ×

×

∫

∫ ∫

∫

[

]

exp

;

3

t
2 2 2

3 1 2 33
0 R

i 1 1 2 2

3 3 i 1 1

2 2 3 3

1 ( ( ))

f ( x 2 ( t s ),x 2 ( t s ),

x 2 ( t s ) s ) J ( x 2 ( t s ),

x 2 ( t s ),x 2 ( t s );s )

τ τ τ
π

τ µ τ µ

τ µ τ µ

τ µ τ µ

+ − + + ×

× + − + −

+ − − + −

+ − + − ×

∫ ∫

 

1 2 3 id d d ds H ,i 1,3,τ τ τ× ≡ =                 (2.10) 

where  

i i is x 2 tτ µ− =  or i i is x 2 ( t s ).τ µ− = −  

All iH - is known functions and 

, ( 1,3, 1,3)
jix i jυ = =  

are defined from system (2.10): 

exp
j j

3

2 2 2
ix 1 2 3 i0 x 13

R

1 2 2 3 3 1 2 3

1 ( ( )) ( x

2 t ,x 2 t ,x 2 t )d d d

υ τ τ τ υ
π

τ µ τ µ τ µ τ τ τ

= − + + +

+ + + +

∫
 

]

exp

;

j
3

j

t
2 2 2
1 2 3 ix 1 13

0 R

2 2 3 3

ix 1 1 2

2 3 3

1 ( ( )) f ( x 2

( t s ),x 2 ( t s ),x 2

( t s ) s ) J ( x 2 ( t s ),x

2 ( t s ),x 2 ( t s );s )

τ τ τ τ
π

µ τ µ τ

µ τ µ

τ µ τ µ

+ − + + + ×

× − + − + ×

× − − + − +

+ − + − ×

∫ ∫

 

j1 2 3 ixd d d ds H ,i 1,3, j 1,3.τ τ τ× ≡ = =     (2.11) 

Then, on the basis of (2.3), (2.10) and (2.11), and their 
private derivatives on xi, we find 

i j i

3

x j ix j jx i
j 1

(H H H H ) ,i 1,3.θ ψ
=

= ⋅ − ⋅ ≡ =∑   (2.12) 

As iψ  - is known functions, hence from system (2.12) 
differentiating 1 equation on x1[(2.12): i=1], 2 equations on 
х2[(2.12): i=2], 3 equations on х3[(2.12): i=3], and 
summarising, we will receive 

3
0 0

1
, ,

iix
i

θ ψ ψ ψ
=

∆ = − ≡ −∑        (2.13) 

at that 

3

2 0 1 2 3
1 2 3

1( ) : ( , , , ) .
4

R

ds ds dsC T s s s t
r

θ θ ψ
π

∈ = ∫  

The equation (2.13) is the third equation of system (2.4). 
Therefore, from the received results, taking into account 
(2.6), follows 

3

1 2 3
0 1 2 3

R

1 1P Q a
2

ds ds ds1 F ( s ,s ,s ,t ) ,
4 r

θ
ρ

π

= − − +

+ ∫
      (2.14) 

i.e. functions i , ,υ θ Ρ  are defined from systems (2.10), 
(2.13), (2.14). 

Uniqueness is obvious, as a method by contradiction from 

(2.10) uniqueness of the decision follows 3,0
i ? T ),υ ∈

i 1,3= . Results (2.10) with a condition ((A), (2.1)) are 
received where s moothness of functions iυ  is required only 
on  xi  as the derivative of 1st order in time has feature in t=0. 
Then taking into account (2.10), (2.13), (2.14) and the 
system (2.4) has the unique continuous decision. 

Further, considering private derivatives of 1st order 

{ }
ix i

i
H ,i 1,3,

x
υ ∂

= =
∂

            (2.15) 

and summarising (2.15) with taking into account (1.2), we 
have 
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exp[ ]{ [
3

t
2 2 2
1 2 3 0 13

0 R

10 ( ) F xτ τ τ
π

= − + + − +∫ ∫  

] [

]}
0

1 2 2 3

3 1 1

2 2 3 3

1 2 3

2 ( t s ),x 2 ( t s ),x

2 ( t s );s J x 2 ( t s ),

x 2 ( t s ),x 2 ( t s );s
d d d ds ,

τ µ τ µ

τ µ ∆ τ µ

τ µ τ µ
τ τ τ

+ − + − +

+ − − + −

+ − + − ×

× =

 

as  0J F∆ = − . 
Means, the system (2.10) satisfies to the equation (1.2). 

2.2. Limitation of Functions 1 2 3( , , )υ υ υ  in 2G (T )λ  

The limiting case which we will consider concerns results 
of the theorem 1. Then the decision of system (1.1) is 
representing in the form of (2.10) with conditions (1.2), (1.3), 
(A), (2.1) and 

sup

sup exp

sup

sup

sup

0

3

3

j

0

3

0

i 3

0

3

T
k

i i 1 2 3 1
R 0

t
2 2 2
1 2 33T 0 R

3

j 1 2 3 2il
j 1

T 1
2

2
1 2 3 3i

R 0
T

k
x i i 1 2 3 4

R 0
T

i 1 2
R 0

f : D f ( x ,x ,x ,s ) ds ,

1 ( ( )

1 f ( l ,l ,l ; s ) ds ,
t s

( ( s ) f ( x ,x ,x ,s ) ds ) ,

J J : D J ( x ,x ,x ,s ) ds ,

( ( s ) J ( x ,x ,

β

τ τ τ
π

τ β

λ β

β

λ

=

≤

− + + ×

× × ≤
−

≤

≡ ≤

∫

∫ ∫

∑

∫

∫

∫

sup exp

sup

max

3

j

3

0

1
2 2

3 5

t
2 2 2
1 2 33T 0 R

3

j il 1 2 3 6
j 1

k
i0 i0 7

R

j j j

i 0 0 11 i 7
T

1 0
0

x ,s ) ds ) ,

1 ( ( )

1 J ( l ,l ,l ; s ) ds ,
t s

: D ,( i 1,2,3; j 1,2,3;

k 0,1,2,3 ),l x 2 ( t s ),

; ( 3 q 2 2 q ),

1( t )dt q , ( t ) dt q
t

β

τ τ τ
π

τ β

υ υ β

τ µ

β β β β µ µ

λ λ

≤ ≤

=

≤

− + + ×

× × ≤
−

≤ = =

= = + −

= = + +

= =

∫ ∫

∑

∫
0T

0

.








































∫

(2.16) 

Really, estimat ing (2.10) in 2G (T )λ ,we have 

[ ]  2

3,0

1 0G ( T )

k
i i 1C ( T ) C( T )

0 k 3

3 N M*,

D N 60 ,
λ

ν β

υ υ β
≤ ≤

 ≤ + =

 = ≤ =


∑  

 

2

31 2

i 1 4 7C( T )

it 0 1 0L

0 k
i i i

k 3
i

i i
i 11 2 3

3 , ( 3 ),i 1,3,

( 3 q 2 2 q ) ,

k 0 : D ;k 0 : D

, k ,( 0,3 ).
x x x

λ

αα α

υ β β β β β

υ β µ µ β

υ υ υ

υ α α
=

 ≤ + + ≤ =

 ≤ + + =

 = ≡ ≠ =

 ∂
= = =
∂ ∂ ∂

∑

 (2.17) 

Theorem 2. In the conditions of the theorem 1 and (2.16), 
(2.17) the problem (1.1) - (1.3) has the unique decision in

2G (T )λ
. 

3. The Decision of a Problem of 
Navier-Stokes with a Condition (B) 

Here we investigate a case (B) when , ( 1,3)i iθ =
containing convective members of a p roblem of 
Navier-Stokes are any. Results of the theorem 1 are not 
applicable. 

Therefore, for the decision of a problem (1.1) - (1.3) we 
offer following algorithms. 

3.1. Problem Navier- Stokes with Average Viscosity 

Let conditions (1.2), (1.3) are satisfied and: 

 

0
i 1 2 3 i0 1 2 3 i

3 3 3
2

i i i i i
i 1 i 1 i 1

( x ,x ,x ,0 ) ( x ,x ,x ) V ( ),

x ;R : 0,k ,

υ υ ξ

ξ γ γ γ γ
= =

 = ≡



= ∋ = =
 =

∑ ∑ ∑
   (3.1) 

at that 

div

m

i i
0

i i 0
3

i
i 1

V ( ,t ),( i 1,3 ),

V ( ,0 ) V ( ); f 0,0 ,

V ( ,t ) 0,( m 1,3 ).
ξ

υ ξ

ξ ξ µ µ

γ ξ
=


 ≡ =
 = ≠ < =

 = =

∑

 (3.2) 

Then on the basis of functions iV ( ,t ),( i 1,3 )ξ =  and 

( ),
i

j

2 2 2
j

x 1 2 3 i

it 1 2 3 it

ix 1 2 3 j i

2
1 2 3 j iix i i

P ( x ,x ,x ,t ) P ( ,t ),

( x ,x ,x ,t ) V ( ,t ), i 1,3
( x ,x ,x ,t ) V ( ,t ),

( x ,x ,x ,t ) V ( ,t ); kV ,

ξ

ξ

ξ ξ

γ ξ

υ ξ
υ γ ξ

υ γ ξ µ∆υ µ

=


= =
 =

 = =

 

system (1.1) it is equivalent will be transformed to a kind  
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2

i it i

i i i

3

i i
i 1

LV V ( ,t ) Z( ,t ) V ( ,t )
1f ( ,t ) P ( ,t ) k V ,( i 1,3 ),

Z( ,t ) V ( ,t );Z 0.

ξ

ξ ξ

ξ

ξ ξ ξ

ξ γ ξ µ
ρ

ξ γ ξ
=


 ≡ + × =
= − + =



≡ =


∑

 (3.3) 

In the specified systems unknown persons contain iV ,P . 
Remark 1. Under regular in  

0 0{( , ) : ,0 }D t R t Tξ ξ= ∈ < ≤  
the decision we understand the decision , 1,2,3iV i =  the 

equation (1.1) in 0D , which has a continuous derivative on 

ξ to the third order inclusive and continuous derivative on 
t(t>0).  From system (3.3), considering conditions (3.2), and 
having entered «algorithm puassonization systems», i.e. 
differentiating the equations of system (3.3) iγ×  

accordingly on ξ  and, then summarising, we have the 
equation: 

.

2

3

0 i i
i 1

( n )

3

1 1 i i
i 1

1 1P F ( ,t ) f ( ,t ),
k

P ( ,t ) 0,( n 0,1),

1F ( ,t ) 0,( F ( ,t ) f ( ,t ))
k

ξξ

ξ ξ

ξ

ξ γ ξ
ρ

ξ

ξ ξ ξ γ ξ

=

→∞

→∞
=


= ≡


 = =

 = ≡

∑

∑

(3.4) 

Therefore, we will receive 
3

i i
i 1

3

i i 1
i 1

3

1 i 1
i 1

1 1P ( ) f ( ,t )d
k

1 f ( ,t )d F ( ,t )d ,
k

1 P F ( ,t ); F 0.

η
ξ

ξ ξ

ξ

η ξ γ η η
ρ

γ η η η η

ξ γ
ρ

+∞

=

+∞ +∞

=

=


= − =



= − = −


 = =


∑∫

∑∫ ∫

∑

  (3.5) 

Really on a basis[(3.3): (3.3)iγξ
∂

×
∂

], we have 

2 3

3 3

i i i i
i 1 i 1

3

i i
1

( LV )( ,t ) f ( ,t )

1 kP ( ,t ) k V ,

Z ( ,t ) 0.

ξ

ξ ξ
ξ

ξ

γ ξ γ ξ
ξ

ξ µ γ
ρ

ξ

= =

=

 ∂
= − ∂

− +

 =



∑ ∑

∑  

Then we have the following (3.4).  

Further, we have 

2it i i i

i i i 1

V Z V k V ,i 1,3,

( ,t ) f ( ,t ) F ( ,t ),
ξ ξ

Φ µ

Φ ξ ξ γ ξ

 + × = + =


≡ −
     (3.6) 

or for consideration of unknown functions iV  we have 

exp 2 0
i i

R

1 1V ( )V ( 2 t )dtτ ξ τ α
π π

= − + + ×∫  
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exp

[ ]

t
2

i
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t 3
2
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j 10 R

i

i 1 2 3

( ) ( 2 ( t s );s )d ds

1 ( )( V ( 2

s;t s )) V ( 2 s;t s )
s
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τ Φ ξ τ α τ

τ γ ξ τ
π

τα ξ τ α
α

τ α µ

=

× − + − +

+ − + ×

× − + − ×

× ≡ = =

∫ ∫

∑∫ ∫ (3.7) 

as here consider a method integration in parts 
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3

j j i
j 1
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j 10 R

i
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j 1

1 ( ) 1( ( ))
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1( V ( ,s )) V ( ,s )d ds'
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V ( 2 ks;t s )d ds,
ks

( 2 k( t s');t s' s ),
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η

η η

ξ η
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If functions iV ,i 1,3=  are system decisions (3.7) thus 
takes place (3.2) and 

sup exp k
0

0 0
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0 2 ( k )
i i ilD 0 R

( ,t ) D {( ,t ) : R,0 t T },

1,V : ( ) ( 2
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i 0 i 0il

t 3
2
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0
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1 i 3

( t s );s ) d ds ,
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that 3,0
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3

i C
i 1

1
0

E V ( ,t ) :

E (1 d ) 6 M .

ξ
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=
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∑
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Then the solution of this system (3.7) we can find on the 
basis of Pikard’s method  

[ ]i ,n 1 i 1,n 2,n 3,nV D V ,V ,V ,n 0,1,...,( i 1,3 ),+ = = =  (3.10) 

where i ,0V ,i 1,3=   - init ial estimates and at that 
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 (3.11) 

Theorem 3. Under conditions (2), (3), (3.2), (3.8) problem 
Navier-Stokes has the unique continuous decision. 

Definition 1. The generalised decision a problems 
(1.1)-(1.3), (3.2) in area 0D  we name any continuous in 

0D  equation decision (3.7), when 00 .µ µ< =  

3.2. We will Consider a Fluid with Very S mall Viscosity 

Let conditions (1.2), (1.3), (3.1) are satisfied and: 
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Then on the basis of functions ( , ),( 1,3)iV t iξ = , 
system (1.1) it is equivalent will be transformed to a kind: 
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Theorem 4. Let functions iV  are system decisions 

exp

2it i i

2
3

i i i 1

V ( ,t ) ( ,t ) k V ,( i 1,3 ),

f F 2 t( k ) ( ).
4k t

ξ
ξ Φ ξ µ

ξΦ γ µ
µ

 = + =



≡ − − −


  (3.15) 
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where known functions and 2
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Theorem 5. If functions iV ,P,i 1,3=  are system 
decisions (3.14), (3.15), (3.10) that (3.1) is the decision of 
system (1.1) in 2

0G ( D )λ : 

exp
2

3
i iH ( ,t ) ( kt ) ( ).

4k t
ξυ ξ µ
µ
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Remark 2. In particular, if conditions (1.2), (1.3), (3.12) 
and 

0
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are satisfied. Then takes place 
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From here, considering (3.14), (3.15) we have 
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Hence all conditions of the theorem 4 and 5 are satisfied. 
Example 1. The specified method of the theorem 5 can be 

used in par ticu lar and for the decision on a problem 
(1.1)-(1.3) as a test example, when takes place: 
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Remark 3. As 0 3V ( ) C ( R )ξ ∈ , that limitedly the 
decision of a problem of Navier-Stokes (1.1) - (1.3) with  a 
condition (B) it is possible to prove limitation and in 
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0W ( D )λ - weight space of type of Sobolev: 
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as 2
0 1 2 3V( ,t ) W ( D ),V (V ,V ,V ).λξ ∈ =   

4. Conclusions 
I. From the received results follows that system 

Navier-Stokes (1.1) in the conditions of (1.2), (1.3), (A1)-(A3) 
can have the analytical unique is conditional-s mooth 
decision. At least, such decision answers to a mathematical 
question, and possibility to construct the decision of a 
problem of Navier-Stokes (1.1)-(1.3) for an incompressible 
liquid with viscosity. 

II. Results of the theorem 1 and 5 can be applied to a 
problem of  Nav ier-Stokes of an incompressible flu id with 
viscosity, when , , [0, )n nR x R t Rν +∈ ∈ ∈ = ∞ . 
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