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Nonstationary Navier-Stokes Problem for Incompressible
Fluid with Viscosity
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Abstract Existence and conditional-smooth solution of the Navier-Stokes equation is one of the most important problems
in mathematics of the century, which describes the motion of viscous Newtonian fluid and which is a basic of
hydrodynamic[1]. Therefore in this work we solve a nonstationary problem Navier-Stokes for incompressible fluid.
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1. Introduction

If to designate components of vectors of speed and external
force, as

v(x,t)=[v,(x,1),0,(x,t),0;(x,1)],
f(x.t)=[f,(x.t), [;(x.t), [;(x,t)]

that for each value §=1,2,3 tumns out the corresponding

scalar equation of Navier-Stokes

ov, <& ov, 1 OP
_l+zuj_l: i___+IUAUi’ (1.1)
ot = 7 ox, P Ox,
with conditions
divv=0,((x,t) e T=R’x[0,T,])  (12)

O |icy = 0(x,.%,,%,), Y(x,,x,,%, )€ R?,  (13)

4> 0 - kinematic viscosity, p - density, 4 - Laplas’s
operator. The additional equation is the condition
incompressibility fluid (2). Unknown are speed vV and
pressure P.

The work purpose. The main object of this work -
existence and proofs ofsingle and conditional smoothness of
the decision of a problem Navier-Stokes for an
incompressible fluid with viscosity.

Theoretical and practical value. Our problem does not
include a derivation of an equation in a physical meaning,
since there is a big amount of works reflecting these
questions[2-4, 8-10]. The Received decisions on the basis of
the developed analytical methods proves in the general
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applicability of the equations of Navier-Stokes.
In a case () < g <[ the current i considered with very

small viscosity. When the current is considered with very
small viscosity i.e. when Reynolds's number is very great
(Re — o0 )[8,9] there is an border layer in which viscosity
influence is concentrated. In many works in this area of the
decision of the equations Navier-Stokes received by the
numerical analysis, also confirm these conclusions.

And in a case 0 <y = 1, = const <+ the current
is considered with average size of viscosity. At very slow
currents, or in currents of'is strong-viscous liquids of force of
a friction much more, than forces of inertia. Hence
convective the acceleration doing the equations nonlinear,
everywhere are supposed identically equally to a zero[9].
Therefore in a case when convective acceleration is not equal
to zero problems connected with methods of integration of
the equations of Navier-Stokes in their general view are
arisen.

The decision of many problems of theoretical and
mathematical physics leads to use of various special weight
spaces. In works[5-7] for the first time have offered a method

which gives solution of problem Navier-Stokes in Gj(T) :
veG(T)={(x,x,,x,,t)eT :0,eC*"(T);
v, € L(0,T))(i=13),0,(x,,%,,%;,t)—

is continuous and limited functions on

(xX.%,,%;, )€ R, C*H30(T )= C*(T )}

and

3
||V||G/21(T) = ;”Ul”ﬁ(zu [’_/1)(7"), (1.4)

ol =73

||Ui||5(2ui,~z)(T) = ||Ui||C3’0(T) 5’
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T0 i
”Uit”Lf1 = (S“3p _[ l(t)|l)l~,(x],x2,x3,t)|2 dt)?,
R 9

0<A(t): Iﬂ(t)?dt =q,.
0

To answer the brought attention to the question, we offer
the following method of the decision of a problem
Navier-Stokes. For that the phrpose, system (1.1) we will
transformto a kind

1 1
Vy+6,=fi——P ——0, +udy,(i=
p 2

0= (00, ~30, )1~

9A| t:0=9l. (x,,%,,%, ),Y(x,,%,,x;, ) e R, (1.7)

1

3 3 —
=> 07,0, =2 v, .(i=13),
i=1 j=1 '

, , (1.8)

2
:[ZU I, :221 D;y0;0y.
]:

without breaking equivalence of system(1.1) and (1.5), (1.6).
The received systems (1.5), (1.6) contain unknown persons

U, 0,(i=13) and pressure P. Here 6 -known

1,3),(1.5)

L3), 6

L.,

functions because are known U;4,Uj ), .

The developed method of the decision of systems (1.5)
],_3), ie.

A) rotd=0,0=(6,,6,,6, );rotv #0 or

B) 6,(i=
necessary conditions, take place:

a) 10t0’ =0,6"=(6.,60,0"), vy 6

functions.

and (1.6), is connected with functions @.,(7 =

1,3) - any functions if, accordingly, as

any

2. A Problem of Navier-Stokes with a
Condition (A)

In this paragraph in the subsequent points, at the specified
restrictions on the entrance data, the strict substantiation of
compatibility of systems (1.5), (1.6) will be given.

2.1. Research With a Condition (A)

Let functions 9?,(1’ = 1,3 ) satisfy to a condition (ao).

Thenrelatively 6,,(i = 1,3 )we supposea condition (A)and

divf #0,0< u<1, 2.1
where from system (1.5) and (1.6), accordingly we will
receive following systems

Nonstationary Navier-Stokes Problem for Incompressible Fluid with Viscosity

1 1 _
i+ Oy +3Qxi :fi_;Px,- +updv;,(i=1,3), 2.2)
Hi :HX[J
3
1 — (23
:Z(U]le __Qxi))(l:],.;).
J=1 2

Theorem 1. Let conditions (1.2), (1.3), (A) and (2.1) are
satisfied. Then systems (2.2) and (2.3) it is equivalent will be
transformed to a kind

1
AJ=-F,, J=—P+= Q+9F_ Zf,x,
p i=1
:fl-+,uAul.—Jx,,
3
Ae:_ = Z lx(‘xl’XZ’x.?’t)’
; = 2.4)
LpoLo g+
p 2
IF(SI’ s, yt)dsjdszd%
2 2 2
r=J(x,—s,) (%, =5, ) +(x;—s;) .

Hence, the problem (1.1) - (1.3) has the unique decision
which satisfies to a condition (1.2).

Proof. From system (2.2) it is visible, if the 1-equation
(2.2,i=1) it is differentiated on x;, 2-equation on x; (2.2, i=2),
3-equation on x3 (2.2, i=3), and it is summarised, we will
receive the equation of Puasson[10]

AJ =-F,, (2.5)

as

v, +os, +vjxj)+A(iQ+e+iP):
ot 2 P

3
= Zf;x /JZ Ix,
i=1 i= 1

divv =0,divf =-F,

+0,, +0; ),

At that it is proved

ds,ds,ds
J—TIF(S],SQ;Sgyt)#, (2.6)
R3
1
J, :_J.rl.FO(x,+r,,x2+72,x3+r3;t)><
i 47rR3

dr,dr,d &7

T,47,dT; ’(Si_xi:Ti’i:]’j)‘

\/(71 +17,° +T3)

Algorithm when we will receive the equation of Puasson
(2.5) for brevity we name «algorithm puassonization
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systems». ] t
In work of Sobolev[10] it is specified that function (2.6) +—I I eXp(—(Z'I2 + Z'ZZ + 1'32 ))|:flx (x,+27,%
satisfies to the equation (2.5) and is called Newtons’ 7’ 0 R} !

pOtTe}?ft:zlfore, if J - the decision of the equation (2.5), then ~ XNH(T=S),%,+ 2T, pu(t =5 ), x; + 273 %
substituting ; ; Xt =5);s) =Ty (%, + 20 p(t=5),%, +
7 ;le +3Qxf o, @9 +212\/,u(t—s),x3+2r3«/,u(t—s);s)]><
xdt,dt,dr,ds = H

Then, on the basis of (2.3), (2.10) and (2.11), and their
private derivatives on x;, we find

il

in (2.2), we have
= [+ pAv, ~J,(i=13J, =J;), @9)

ie. system (2.2) it is equivalent by (2.9) will be
transformed to a kind linear the nonuniform equation of heat 3
conductivity. The equations (2.5), (2.9) is there are firstand g — (H.-H.-H, H_)=y. i= ﬁ (2.12)
second equations ofsystem (2.4). i z S S Vi

The system (2.9) is solved by S L.Sobolev’s method:

1_13] 1,3. (2.11)

lx’

J=1
As Y/, - is known functions, hence from system (2.12)

L. = J. p( )U()(SI’SZ’S3)X differentiating 1 equation on x;[(2.12): i=1], 2 equations on
8(«/7[,[1 ) e l x2(2.12): i=2], 3 equations on x;[(2.12): i=3], and
summarising, we will receive
3
xds,ds,ds + I J- - -
145,453 0R3 exp( 4,u(t S)) AO=—y = Z Vi, » (2.13)
Ji at that
xﬁ[ﬂ(sl,sz,sps)—Jl.(sl,sz,s3,s)]>< 1 ds,ds.ds
(H(t=s)) eecz(T):9=4—jy/"(sl,sz,spt)#.
_ 1 2 2 2 " S :
XdSIdSZdS3dS = F J. exp(—(rl T, +7; )% The equation (2.13) is the third equation of system (2.4).
TR Therefore, from the received results, taking into account
XU (X + 2T [ it , X, + 2T\ it , X5 + 2754/ ut ) x 2.6), follo;vs /
;o =—0--0+a
xdr,dt,dr, +—I I exp(—(7] +1; +7; )% P 2 514
72'3 0 p3 ( ’ )
\ R N 1 IF(S o t)ds,dszdsj
- 0 ]2°2:°3» -
X[ fi(x,+ 27, 1t —=5), %, + 20, u(t =), 4T 1 r
x; + 27 /,u(t—s);s)—Ji(xI + 21, /,u(t—s), i.e. functions Ui,e,P are defined fromsystems (2.10),
(2.13),(2.14).
Xy + 2T\ it =5 ), x5+ 275 p(t — S);S)] X Uniqueness is obvious, as a method by contradiction from
xdr,dr,dr,ds=H,i=1,3, (2.10)  (2.10) uniqueness of the decision follows U, € 7 30 T),
where I =1,3. Results (2.10) with a condition ((A), (2.1)) are
S =X = Ti2 Mt or s, —X; = z-1'2 p(t=s). received where smoothness of functions 0, is required only
Al H ;- is known functions and on x; as the derivative of 1st order in time has feature in =0.
Then taking into account (2.10), (2.13), (2.14) and the
lx (i 1 3,j= 1 ,3) system (2.4) has the unique continuous decision.
are defined from system (2.10): Further, considering private derivatives of 1st order
1 2,2, 2 v =i H}Yi=13 2.15
Ui, = —\/—3 j exp(—(7; +7; +7; ))Ui()xj (x;+ i ox, i, T @13
T g3

and summarising (2.15) with taking into account (1.2), we

+22'1\/E, x, + 21, \/E xX; + ZTsﬂ)drldrde +  have
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J.J.exp[—(rf +122 +132)]{—F0[x,+

1

Y
+22'1\/m,x2 +2z’2\/m,x3 +
+2e,Ju(t =5 )51 AJ[x, + 22, (1 —s),
X, +272m,x3 +273\/m;s]}x

xdr,dt,dr,ds =0,
as AJ =-F,.
Means, the system (2.10) satisfies to the equation (1.2).

2.2. Limitation of Functions (U,,0,,0;) in G;(T)

The limiting case which we will consider concerns results
of the theorem 1. Then the decision of system (1.1) is
representing in the formof (2.10) with conditions (1.2), (1.3),
(A), 2.1)and

Iy
fi-'sujp_[ |Dkﬁ(x],x2,x3,s)|ds£ﬂ],
R" 9

sup Jjexp(—(rf+r§+r§)x
\/_

0 g3

~
w

X

Jiss o117, (ot i s < B,
=2

(sup j )| (3535 )| ds)

N\N

<Bs,

Ty
J.=J;: sup'f |Dk Jl.(xl,xz,x3,s)|ds <pB,
! RS

t\»\\

(sup I /1(S)|J (x,,xz,x3,s)| ds)

R}

<p., (16

SI;p\/j?Jjexp(—(rf+r§+r32)x

0 R3

w

’

Ji-s 5
Um.su| |<ﬁ7,(1 1,2,3;j=123;
R3

k=0,1,2,3)1, =x,+ 27\ u(t-s),
IB:maXﬂi;ﬁo = B(3uqy +2+ 2\ uq, ),

Ty

jxi(t)dt = q,,j/m) dt =g,

Nonstationary Navier-Stokes Problem for Incompressible Fluid with Viscosity

Really, estimating (2.10) in G, ( T ) ,we have
”V”GZ(T) <3N, +B,)1=

B k
”Ui“c”(r) - oszk:g”D U"HC(T)

”Ui”C(T) <3B, (B +B,+ 5 S3ﬂ),i=],_3,
”Uit”Li SP(3Juqy +2+2uq, )= p),
k=0:Doui Eul.;k;tO:Dkul.:

oy, 3 —
= : k=Y a.(a=03).
axlaj axZaZ a.X3a3 l:]

Theorem 2. In the conditions of the theorem 1 and (2.16),
(2.17) the problem (1.1) - (1.3) has the unique decision in

G;(T)

<N, =608,

2.17)

)

3. The Decision of a Problem of
Navier-Stokes with a Condition (B)

Here we investigate a case (B) when @,(i=1,3)

containing convective members of a problem of
Navier-Stokes are any. Results of the theorem 1 are not
applicable.

Therefore, for the decision of a problem (1.1) - (1.3) we
offer following algorithms.

3.1. Problem Navier- Stokes with Average Viscosity
Let conditions (1.2), (1.3) are satisfied and:
0
V(X X,,%; )=V (S),
3 3.1

3 3
E=D yx Roy,: D yi=0k=>y
i=1 =1 i=1

at that

U.(x;,%,,%;,0) =

v =V(Et)(i=13),
Vi(E,0)=V(E);divf 20,0 < u=u,, 32)
> Von(§.1)=0,(m= 1,3).

i=1
Then on the basis of functions V,(&,t),(i =

Pxi(xl’XZ’x3’t):7/i[)§(§’t):
Vi(E,0).(i=1,3),
Vie(E.1),
22(601); HAY; = kY 5,

system(1.1) it is equivalent will be transformed to a kind

A%

],_3) and

U,(X,,X,,X;5,1)=

Uix«(xl’XZ’x.?’t):yj

z(xj,xz,xj,t) 7/]
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=Vi(S )+ Z(5,0)xVe(5,t)=

1 . T
=S p Rt il o (1=13), 6

3
Z(£1)= 2 yVi(§:1); Z: =0.

In the specified systems unknown persons contain V,, P.

Remark 1. Under regular in
={(&,0):EeRO<t<T)}
the decision we understand the decision V,,i =1,2,3 the
equation (1.1) in D0 , which has a continuous derivative on

& to the third order inclusive and continuous derivative on
1t>0).

From system (3.3), considering conditions (3.2), and
having entered «algorithm puassonization systems», ie.
of system (3.3) Xy,

differentiating the equations

accordingly on & and, then summarising, we have the

equation:
Lp —reen=L3 s
P g2~ Tolos _ki:]}/i il 6,t),

3.4

Pg")(g,z)|§% =0,(n=0,1),

EF(Et)).,, =0(F (&)=

] 3
Ezyif,-(ﬁ,t))-
i=1

Therefore, we will receive

1 400 ] 3
—bP= j(”“f);Z%fm(ﬂ,t)dn:
P & i=1
+ool 3 +o0
:—J.;Z%fi(ﬂ,t)dﬂ=—fF,(n,t)dn, (3.5)
e Ni=I £

3
~P. =F(E1);) 7F, =0.
i=1

Really on a basis[(3.3): %%‘ X (3.3)], we have

271

_;kpégz(é)t)+k,u;7il/i§3;

Z.(E1)=0.

(LV)(§ t)= Z%f;(é t)-

Then we have the following (3.4).

Further, we have

{V,., H IV =@kl i =13,
Di(c.t)=fi(.t)=yFi(S.t),

or for consideration of unknown functions Vl we have

(3.6)

ﬁ i exp(—’ W' (E+ 2tat )dt + ﬁ x

xj-J.exp(—rz)(Di(Zj +2r\Ja(t—s),;s)drds +

Vi:

Hexp( r )(Zy-V_,-(«:mx

()R
x\/a;t—s) f
e

xdrds= D[V, V,,V,}(i=13a=ku)

as here consider a method integration in parts

(E-n) 1
”( (- ) i)

duk(t—s'")
X( Z%Vj( 1.5 )V, (n.s'Jnds' = %x
”e"p( 4 )(27/V(§+2fm,‘t—s))x

0 R

(3.7)

-

Lkst—s)drds,

Jﬂ_ks |
(n—&=20\Juk(t=s);1=5'=s),

3
Z,(n.s)=Y.yV,(n.s)=0,

Jj=1
and

(5 77)

—=—— )V’ (n)dn +

2mj exp( —

I J Wr
<@, (1,5 )dnds = ﬁ £ exp(—7° V' (& +

(E-n)

4,uk(t —S))X

+27. ikt )dt + ﬁiiexp( ~77 )D,(& +

+2T\/m;s)dfds,
(77—§=2r\/% orn—&=2r\ pk(t—s).
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If functions Vl.,i =],_3 are system decisions (3.7) thus
takes place (3.2) and

V(Et)eDy={(Et): E€RO<t<T,},

@,V —sup”exp( r )‘@(k)(§+21'><

NE
Xm;s)|drds <p,
o) =@, ;(£1)eD, ()| <n,
1 5
s oo

xr,dtds < B,1,

(3.8)
s%p|Vi0(k)| <P, (i=13:k,=0,3),
l:§+22'\/0{(t—s);ﬂ:;;21q<)§ﬂi,
a=kﬂ'0<u=uo
d= Zd <I(d, =2pr,—,i=13),

f
that V, € CM(DU):
3
=MW -
2. 9

E<(1-d)'6p=M,.
Then the solution of this system (3.7) we can find on the
basis of Pikard’s method
V=DV, Vo VoI

in+l 1,n’

0,1,..(i=13), (3.10)

where V. - initial estimates and at that

i,0?

i=13
V(£t)eD,,V, |V, V| <r=const,

3
EO :ZIHV; 10” En+1 Z“V

n+l
En+1 <d EOW)O’

in+l

G.11)

Vin— Vi = H] € CY(Dy ) (i=13)

Theorem 3. Under conditions (2), (3), (3.2), (3.8) problem
Navier-Stokes has the unique continuous decision.
Definition 1. The generalised decision a problems

(1.1)-(1.3), (3.2) in area Do we name any continuous in

50 equation decision (3.7), when 0 < 11 = p,.

3.2. We will Consider a Fluid with Very S mall Viscosity

Nonstationary Navier-Stokes Problem for Incompressible Fluid with Viscosity

Let conditions (1.2), (1.3), (3.1) are satisfied and:

v =V(E)+K () (i=13),
Ky(&t)=(kt )

Vi(£.0)=V (&),
div/ #0;0< u<1; P, (g,z)|§% =0

3 R —

2V (E)=0,(m=02)(5 ) €D,

i=1 (3.12)
3

Vi(m=0:Z=3 yV;=0),

V(O) =
i&?
i=1

V=, v) V" =) viv),
at that

Px[(xj,xz,x3,t) = 7/iP (é,t),

V. (E0)+(ukt) .

Ak ut’

2 2
5 )+3\/(ﬂk)3txeXp(— ),

4kt 4kt
U, (X, X5, X3,1) = 7/‘,'Vi¢(§;t)_\/(ﬂkt)37/j X

28 ¢’
4kt 4kt

0,0 (5003, ) = 11V, o (E) N (1ikt) 7

U, (X;,X,,X3,)=

xexp(—

exp(— ),

& & 2 3
X ex , k)t x
52
X——¢ - X
25 e’

pAv, —,ukV SN 5
~ Lk e xexp(-—= <),

4kt

p(— )—

5 0
Z;Ujé Z7,(V(§t)+ ( Lkt )’ x
J= J
k) =
&’ —
xexp(—4k’ut)]=0,(i=],3;Z=0).
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Then on the basis of functions Vl.(é,t),(l':l,_3),

system (1.1) it is equivalent will be transformed to a kind:
1' 3
7P(§ t)+k,uV (i=

in the spec1ﬁed systems unknown persons contain V, P.

LV, =V,

it

= fi(&t)—— 1,3), 3.13)

Therefore
1 14
—P.(5t)=F, =E27iﬁ(§,t),
P i=1

(3.14)
Lp

[ F, (nyan (&)<,
¢

as

%(Z%Vi)+227/imxexp(_ é ):

4k ut

=;y,-f,-(é,t)—%k@(f,tﬂkﬂ;m,(i=1,_3).

Theorem 4. Let functions J, are system decisions

Vi(S.t)=D;(S,t)+ kﬂViszz (i= 1:_3),
> (3.15)
@, = fi=1Fy =2k e~

Then

V()= [exn(~r W& + 2rat e +

+%j.jexp(_’[2)@i(§ + 27\/0507—5),‘5)61‘[62% =
T or

=H,(E)i=13a=ku,
where known functions and H, € G;(D,):

”V”Gj(z)) - 23:(”’/:”&0 + ”V””Li )M,

Wl =312,

(3.16)

<M,,
P z
Vil = Csup f A(s)|H, (&) ds)? <M,
0

(Sl}p_tfﬂ(S)pri(f,S)lz ds )’ < M;,

H;‘y =H, (i=13:k=0,3),

) )

j A1) Lar, q, = j A(t)dt.

Theorem 5. If functions V,,P,i=1,3 are system
decisions (3.14), (3.15), (3.10) that (3.1) is the decision of
system(L.1)in G;(D,):
2
g ). (3.17)
4kt

0, = H,(&.0)+( ikt exp(~

Remark 2. In particular, if conditions (1.2), (1.3), (3.12)
and

Ko(é::t) =0:
(3.18)
Ui = Vz(g’t)il = ]:31
are satisfied. Then takes place
V)= St Ly Pt ukV LT3, (19)
P &
Fromhere, considering (3.14), (3.15) we have
] 0
—P=—[F/(n.t)dn,
P :
V. =@ + ukVv ,,
it i lu i& (320)
D,(&t)= fi(St)-y Fi(St)i=13,
3
Z%’F} =0.
i=1

Hence all conditions of the theorem 4 and 5 are satisfied.

Example 1. The specified method of the theorem 5 can be
used in par ticular and for the decision on a problem
(1.1)-(1.3) as a test examp le, when takes place:

v, =4V (E)i=13,
O, =AV(E 1)+ Ky(S1)=

Ky(&t)=Al( ukt
3 3 3

&= Z]/l.xl.,() < /11.,271. :O,Z/ll.}/i =0,
i=1 i=1 i=1

vi=v,=Ly;=-24,=14,=31;=2,

3 3 3
k=Y 7] .dy=2 4.(k=6,dy=3 2 =6),
i=1 i=1 i=1

0 3 3

o 4 U; Z[ﬂﬁ%Vg +7:Kp:1=0,
i i=1 =]

3

271‘-(2[ :Z[/li}/iV(‘f:t)_i_]/[KO(f:t)]:0;
i=1 i=1

Q(50),

that
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2

AV, + 23)(uk )t x exp(—

] _
——¥ B+ pk AV, i=13.
0 £

)=1(st) -

et 3.21)
or

1
V= ()4 kY

0

] o0
—P=-[F(n.t)dn,
P :

Lpoplsy,
P : ]_kizzyi :
3
Z%‘FIZO’
i=1

1
F}:g(ff*'fz_2f3)’

D, = —6\/(,uk)3t xexp(—

52 3
4k,ut)+,;fi‘

Then

% :ﬁ}[exp(— 2 W&+ 2okt )dz +

I , —
+d0\/;”e><p(—r VO, (E+ 21 uk(t—5);5)

0R

xdrds=H(Et),
v, =AH(E)+ K (E)=H(E)i=13.

Remark 3. As Vo(f) (S C3 (R), that limitedly the

decision of a problem of Navier-Stokes (1.1) - (1.3) with a
condition (B) it is possible to prove limitation and in

Wf (D, ) - weight space of type of Sobolev:
3
by =Sl

W(ii,/l) = {(f’t) €D, Uk Uir € Lfl(Do ) k= ﬂ}

121174
(Ul‘,ﬂ,

3 Ty
={> sup [ A(t)] O (6t )Y dt +
) k=0 R

Ty i o
+sup [ A(t)|v, (&t ) agan?,i=13,
R
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as V(Et)eW](D,).V =(V,.V,.V,).

4. Conclusions

I. From the received results follows that system
Navier-Stokes (1.1) in the conditions of (1.2), (1.3), (A1)-(A3)
can have the analytical unique is conditional-smooth
decision. At least, such decision answers to a mathematical
question, and possibility to construct the decision of a
problem of Navier-Stokes (1.1)-(1.3) for an incompressible
liquid with viscosity.

II. Results of the theorem 1 and 5 can be applied to a
problem of Navier-Stokes of an incompressible fluid with

viscosity, when v € R",x € R",t € R, =[0,%0).
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